An upper J-Hessenberg reduction of a matrix through symplectic Householder transformations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Householder-based algorithm for Hessenberg-triangular reduction∗

The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A − λB requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations partially accumulated into small dense matrices which are subsequently applied using matrix multiplication routines. A non-vanishing fraction of the ...

متن کامل

A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form

In this paper, we present an algorithm for the reduction to block upper-Hessenberg form which can be used to solve the nonsymmetric eigenvalue problem on message-passing multicomputers. On such multicomputers, a nonsymmetric matrix can be distributed across processing nodes logically configured into a two-dimensional mesh using the block-cyclic data distribution. Based on the matrix partitionin...

متن کامل

A construction of symplectic connections through reduction

We give an elementary construction of symplectic connections through reduction. This provides an elegant description of a class of symmetric spaces and gives examples of symplectic connections with Ricci type curvature, which are not locally symmetric; the existence of such symplectic connections was unknown. Key-words: Marsden-Weinstein reduction, symplectic connections, symmetric spaces MSC 2...

متن کامل

Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing

We present a Hessenberg reduction (HR) algorithm for hybrid systems of homogeneous multicore with GPU accelerators that can exceed 25× the performance of the corresponding LAPACK algorithm running on current homogeneous multicores. This enormous acceleration is due to proper matching of algorithmic requirements to architectural strengths of the system’s hybrid components. The results described ...

متن کامل

Accelerating the reduction to upper Hessenberg form through hybrid GPU-based computing

We present a Hessenberg reduction (HR) algorithm for hybrid multicore + GPU systems that gets more than 16× performance improvement over the current LAPACK algorithm running just on current multicores (in double precision arithmetic). This enormous acceleration is due to proper matching of algorithmic requirements to architectural strengths of the hybrid components. The reduction itself is an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2019

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2019.02.025